Syllabus Module

Dept. Of Mathematics

Session: 2019-2020

Khatra Adibasi Mahavidyalaya

	Sen	nester -1	
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/ 101/C-1	Calculus, Geometry & Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (logx)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	CDG
		Unit 3	MN

	and biquadratic equation. Inequality: The inequality involving AM≥GM≥HM, Cauchy- Schwartz inequality. Unit 2	AI
SH/MTH/ Algo 102/C-2	Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic	AI
	Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid. Unit 4 Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	AI

		Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.	
		Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence.	MN
		Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix	MN
SH/MTH/ 103/GE-1	Calculus, Geometry & Differential Equation (GE T1)	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates,	CDG

tracing in polar coordinates of	
standard curves, L'Hospital's	
rule, applications in business,	
economics and life sciences.	
Unit 2	CDG
Reduction formulae, derivations	
and illustrations of reduction	
formulae of the type $\int \sin^n x dx$,	
$\int \cos^n x \ dx \ , \int \tan^n x \ dx,$	
$\int sec^n x \ dx \int (log x)^n \ dx ,$	
$\int sin^m x cos^n x \ dx$, parametric	
equations, parameterizing a	
curve, arc length, arc length of	
parametric curves, area of	
surface of revolution.	
Techniques of sketching conics.	
Unit 3	CDG
Reflection properties of conics,	
rotation of axes and second	
degree equations, classification	
of conics using the discriminant,	
polar equations of conics.	
Spheres. Cylindrical surfaces.	
Central conicoids, paraboloids,	
plane sections of conicoids,	
Generating lines, classification	
of quadrics, Illustrations of	
graphing standard quadric	
surfaces like cone, ellipsoid.	
Unit 4	CDG
Differential equations and	
mathematical models. General,	
particular, explicit, implicit and	
singular solutions of a	
differential equation. Exact	
differential equations and	
integrating factors, separable	
equations and equations	
reducible to this form, linear	
equation and Bernoulli	
equations, special integrating factors and transformations.	

SEMESTER – II

COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/ 201/C-3	Real Anlysis	Unit 1 Review of Algebraic and Order Properties of R, ε - neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano- Weierstrass theorem for sets, compact sets in R, Heine-Borel Theorem.	AI
	Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.	RB	
		Unit 3 Infinite series, convergence and	RB

		divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.	
SH/MTH/ 202/C-4	Differential Equations and Vector Calculus	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.	CDG
		Unit 2 Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions.	CDG
		Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	CDG

		Unit 4	MN
		Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and	
		integration of vector functions.	
SH/MTH/	Real Analysis	Unit 1	AI
203/GE-2	(GE T3)	Review of Algebraic and Order Properties of R, ε - neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano-Weierstrass theorem for sets, compact sets in R, Heine-Borel Theorem.	AI
		Unit 2 Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.	RB
		Unit 3	RB

	OFM	Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.	
COLIBSE	COURSE	COURSE TOPIC	Taaahara
CODE		COUNSE TOFIC	Teachers
SH/MTH/ 301/C-5	TITLE Theory of Real Functions & Introduction to Metric Space	Unit 1 Limits of functions (ε - δ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem.	MN
		Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value	MN

		theorem to inequalities and	
		approximation of polynomials. Unit 3	D a D I
			MN
		Cauchy's mean value theorem.	
		Taylor's theorem with	
		Lagrange's form of remainder,	
		Taylor's theorem with Cauchy's	
		form of remainder, application of	
		Taylor's theorem to convex	
		functions, relative extrema. Taylor's series and Maclaurin's	
		series expansions of exponential	
		and trigonometric	
		functions, $ln(1 + x)$, $1/ax + b$	
		and $(1 + x)^n$. Application of	
		Taylor's theorem to inequalities.	
		rayior s incorem to mequanties.	
		Unit 4	CDG
		Metric spaces: Definition and	
		examples. Open and closed	
		balls, neighbourhood, open set,	
		interior of a set. Limit point of a	
		set, closed set, diameter of a	
		set, subspaces, dense sets,	
		separable spaces.	
SH/MTH/	Group Theory-I	Unit 1	MN
302/ C-6		Symmetries of a square,	
		Dihedral groups, definition and	
		examples of groups including	
		permutation groups and	
		quaternion groups (through	
		matrices), elementary properties	
		of groups.	
		Unit 2	MN
		Subgroups and examples of	
		subgroups, centralizer,	
		normalizer, center of a group,	
		product of two subgroups.	8.487
		Unit 3	MN
		Properties of cyclic groups,	
		classification of subgroups of	
		cyclic groups. Cycle notation for	
		permutations, properties of	

		permutations, alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem. Unit 4 External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Unit 5	MN
		Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems.	IVIIN
SH/MTH /303/C-7	Numerical Methods Numerical	Unit 1 Algorithms. Convergence. Errors: Relative, Absolute. Round off. Truncation.	CDG
	Methods Lab	Unit 2 Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula-falsi method, fixed point iteration, Newton-Raphson method. Rate of convergence of these methods.	CDG
		Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU Decomposition	AI
		Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory forward and	AI

		algorithm. Congruence relation between integers. Principles of Mathematical Induction,	
		ordering property of positive integers, Division algorithm, Divisibility and Euclidean	
		cardinality of a set. Well-	
		One to one correspondence and	
		functions, Invertible functions,	
		Functions, Composition of	
		Equivalence relations.	MN
		Cauchy-Schwartz inequality. Unit 2	N/INI
		involving $AM \ge GM \ge HM$,	
		Inequality: The inequality	
		and biquadratic equation.	
		Descartes rule of signs, Cubic	
		Transformation of equation,	
		between roots and coefficients,	
		Theory of equations: Relation	
		indices and its applications.	
		Moivre's theorem for rational	
304/GE-3		numbers, nth roots of unity, De	
	AISENIA (GETZ)	Polar representation of complex	MN
SH/MTH /	Algebra (GET2)	Unit 1	NANI
		Approximation: Least square polynomial approximation.	
		problem: Power method.	
		The algebraic eigenvalue	
		quadrature formula.	
		Simpson's 1/3rd rule, Gauss	
		Trapezoidal rule, Composite	
		Rule. Midpoint rule, Composite	
		3/8th rule, Weddle's rule, Boole's	
		Simpson's 1/3rd rule, Simpsons	
		Cotes formula, Trapezoidal rule,	
		Numerical Integration: Newton	"
		Unit 5	AI
		on finite differences.	
		interpolations, methods based	
		Methods based on	
		interpolation. Numerical differentiation:	
		backward difference	

statement of Fundamental	
Theorem of Arithmetic.	
Unit 3	MN
Systems of linear equations, row	
reduction and echelon forms,	
vector equations, the matrix	
equation Ax=b, solution sets of	
linear systems, applications of	
linear systems, linear	
independence.	
Unit 4	MN
Introduction to linear	
transformations, matrix of a	
linear transformation, inverse of	
a matrix, characterizations of	
invertible matrices. Subspaces	
of R ⁿ , dimension of subspaces of	
R ⁿ , rank of a matrix, Eigen	
values, Eigen Vectors and	
Characteristic Equation of a	
matrix. Cayley-Hamilton	
theorem and its use in finding	
the inverse of a matrix	1

SEMESTER - IV

COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH	Riemann	Unit 1	MN
/401/C-8	Integration and	Riemann integration:	
	Series of	inequalities of upper and lower	
	Functions	sums, Darbaux integration,	
		Darbaux theorem, Riemann	
		conditions of integrability,	
		Riemann sum and definition of	
		Riemann integral through	
		Riemann sums, equivalence of	
		two Definitions.	
		Riemann integrability of	
		monotone and continuous	
		functions, Properties of the	
		Riemann integral; definition and	

SH/MTH/402/C-	Multivariate	Unit 1	Al
		Unit 5 Power series, radius of convergence, Cauchy Hadamard Theorem. Differentiation and integration of power series; Abel's Theorem; Weierstrass Approximation Theorem.	MN
		Unit 4 Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's inequality, Parseval's identity, Dirichlet's condition. Examples of Fourier expansions and summation results for series.	MN
		Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test.	
		Unit 2 Improper integrals. Convergence of Beta and Gamma functions. Unit 3	MN
		integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals. Fundamental theorem of Integral Calculus.	

9 C	alculus	Functions of several variables, limit and continuity of functions of two or more variables Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems Unit 2 Double integration over rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co-ordinates. Change of variables in double integrals and triple integrals	AI
		Unit 3 Definition of vector field, divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path.	AI
		Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem.	AI

SH/MTH /403/C-10	Ring Theory and Linear Algebra-I	Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and	CDG
		fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients.	CDG
		Unit 3 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	RB
		Unit 4 Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.	RB
SH/MTH /404/GE-4	Differential Equations and Vector Calculus (GET4)	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its	CDG

		properties and applications, Linear homogeneous and non- homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters. Unit 2	CDG
		Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in	
		two unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	CDG
		Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	CDG
SH/MTH / 405/SEC-2	Graph Theory (SEC T4)	Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi - partite graphs isomorphism of graphs.	RB

		Unit 2 Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles,theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,	RB
	SFMI	Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm. ESTER — V	RB
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH / 501/C-11	Partial Differential Equations and Applications	Unit 1 Partial Differential Equations – Basic concepts and Definitions. Mathematical Problems. First- Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General Solution of Quasi Linear Equations. Canonical Forms of First-order Linear Equations. Method of Separation of Variables for solving first order partial differential equations.	AI
		Unit 2 Derivation of Heat equation, Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic.	AI

		Linear Equations to canonical	
		forms.	
		Unit 3	AI
		The Cauchy problem, Cauchy-	
		Kowalewskaya theorem, Cauchy	
		problem of an infinite string.	
		Initial Boundary Value Problems.	
		Semi-Infinite String with a fixed	
		end, Semi-Infinite String with a	
		Free end. Equations with non-	
		homogeneous boundary	
		conditions. Non- Homogeneous	
		Wave Equation. Method of	
		separation of variables, Solving	
		the Vibrating String Problem.	
		Solving the Heat Conduction	
		problem	
		Unit 4	AI
		Central force. Constrained	
		motion, varying mass, tangent	
		and normal components of	
		acceleration, modelling ballistics	
		and planetary motion, Kepler's	
		second law.	
SH/MTH/	Group Theory -	Unit 1	MN
502/C-12	II	Automorphism, inner	
		automorphism, automorphism	
		groups, automorphism groups of finite and infinite cyclic groups,	
		applications of factor groups to	
		automorphism groups,	
		Characteristic subgroups,	
		Commutator subgroup and its	
		properties.	
		Unit 2	MN
		Properties of external direct	10114
		products, the group of units	
		modulo n as an external direct	
		product, internal direct products,	
		Fundamental Theorem of finite	
		abelian groups.	
		Unit 3	MN
		Group actions, stabilizers and	
		kernels, permutation	

		Unit 3	CDG
		Hungarian method for solving assignment problem.	
		mathematical formulation,	
		assignment problem and its	
		solution, algorithm for solving transportation problem,	
		determination of starting basic	
		approximation method for	
		cost method and Vogel	
		mathematical formulation, northwest - corner method, least	
		Transportation problem and its	
		interpretation of the dual.	
		relationships, economic	
		Duality, formulation of the dual problem, primal - dual	
		Unit 2	CDG
		comparison.	
		Big - M method and their	
		variables, two - phase method.	
		introduction to artificial	
		simplex algorithm, simplex method in tableau format,	
		and unboundedness, the	
		solution, convex sets, optimality	
	(DSE T1)	simplex method, graphical	
303/ DSE-I		programming problem. Theory of	
503/ DSE-1	Programming	Introduction to linear	CDG
SH/MTH/	Linear	Unit 1	CDG
		theorem, Simplicity of A _n for n ≥ 5, non-simplicity tests.	
		consequences, Cauchy's theorem, Simplicity of A_n for $n \ge n$	
		p-groups, Sylow's theorems and	
		consequences, conjugacy $in S_n$,	
		conjugation, class equation and	
		Groups acting on themselves by	IVII V
		Unit 4	MN
		Cayley's theorem. Index theorem.	
		of group actions. Generalized	
		given group action. Applications	
		representation associated with a	

		person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	
SH/MTH / 504/ DSE-2	Probability and Statistics (DSE T4)	Unit 1 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential.	AI
		Unit 2 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional expectations, independent random variables, bivariate normal distribution, correlation coefficient, joint moment generating function (jmgf) and calculation of covariance (from jmgf), linear regression for two variables.	AI
		Unit 3 Chebyshev's inequality, statement and interpretation of (weak) law of large numbers and strong law of large numbers. Central Limit theorem for independent and identically	AI

distributed random variables with finite variance, Markov Chains, Chapman-Kolmogorov equations, classification of states.	
Unit 4	ΑI
Random Samples, Sampling	
Distributions, Estimation of	
parameters, Testing of	
hypothesis.	

SEMESTER - VI

COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/	Metric Spaces	Unit 1	RB
601/C-13	and Complex	Metric spaces: Sequences in	
	Analysis	metric spaces, Cauchy	
	· · · · · · · · · · · · · · · · · · ·	sequences. Complete Metric	
		Spaces, Cantor's theorem.	
		Unit 2	RB
		Continuous mappings,	
		sequential criterion and other	
		characterizations of continuity.	
		Uniform continuity.	
		Connectedness, connected	
		subsets of R.	
		Compactness: Sequential	
		compactness, Heine-Borel	
		property, Totally bounded	
		spaces, finite intersection	
		property, and continuous	
		functions on compact sets.	
		Homeomorphism. Contraction	
		mappings. Banach Fixed point	
		Theorem and its application to	
		ordinary differential equation.	
		Unit 3	Al
		Limits, Limits involving the point	
		at infinity, continuity. Properties	

		Unit 2	CDG
		domains.	
		factorization domains, Euclidean	
		irreducible, primes, unique	
		Divisibility in integral domains,	
		unique factorization in Z [x].	
		tests, Eisenstein criterion, and	
		reducibility tests, irreducibility	
		principal ideal domains, factorization of polynomials,	
		algorithm and consequences,	
	Algebra II	commutative rings, division	
602/C-14	and Linear	Polynomial rings over	
SH/MTH/	Ring Theory	Unit 1	RB
		convergence of power series.	
		absolute and uniform	
		Laurent series and its examples,	
		Unit 6	AI
		examples.	
		series, Taylor series and its	
		Convergence of sequences and	
		fundamental theorem of algebra.	
		Liouville's theorem and the	AI
		Unit 5	Al
		Cauchy integral formula.	
		moduli of contour integrals. Cauchy- Goursat theorem,	
		its examples, upper bounds for	
		Contours, Contour integrals and	
		definite integrals of functions.	
		derivatives of functions, and	
		trigonometric function,	
		function, Logarithmic function,	
		analytic functions, exponential	
		Analytic functions, examples of	
		Unit 4	AI
		for differentiability.	
		equations, sufficient conditions	
		formulas, Cauchy-Riemann	
		Derivatives, differentiation	
		complex variable, mappings.	
		of complex numbers, regions in the complex plane, functions of	

		Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal	
		polynomial for a linear operator, canonical forms.	
		Unit 3	CDG
		Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least Squares Approximation, minimal solutions to systems of linear equations. Normal and self- adjoint operators. Orthogonal projections and Spectral theorem.	
SH/MTH /	Number Theory	Unit 1	MN
603/ DSE-3	(DSE T7)	Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues, Chinese Remainder theorem, Fermat's Little theorem, Wilson's theorem.	
		Unit 2	MN
		Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi - function, Euler's theorem,	IVIIV

		function.	
		Unit 3	MN
		Order of an integer modulo n,	
		primitive roots for primes,	
		composite numbers having	
		primitive roots, Euler's criterion,	
		the Legendre symbol and its	
		properties, quadratic reciprocity,	
		quadratic congruences with	
		composite moduli. Public key	
		encryption, RSA encryption and	
		decryption, the equation $x^2 + y^2 =$	
		z², Fermat's Last theorem.	
SH/MTH/	Project Work		AI
604/ DSE-4			